[Swift]LeetCode343. 整数拆分 |
发布时间:2020-12-14 05:06:09 所属栏目:百科 来源:网络整理
导读:Given a positive integer? n ,break it into the sum of?at least?two positive integers and maximize the product of those integers. Return the maximum product you can get. Example 1: Input: 2Output: 1 Explanation: 2 = 1 + 1,1 × 1 = 1. Exampl
Given a positive integer?n,break it into the sum of?at least?two positive integers and maximize the product of those integers. Return the maximum product you can get. Example 1: Input: 2
Output: 1 Explanation: 2 = 1 + 1,1 × 1 = 1.
Example 2: Input: 10
Output: 36 Explanation: 10 = 3 + 3 + 4,3 ×?3 ×?4 = 36.
Note: You may assume that?n?is not less than 2 and not larger than 58. 给定一个正整数?n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1,1 × 1 = 1。 示例?2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4,3 ×?3 ×?4 = 36。 说明:?你可以假设?n?不小于 2 且不大于 58。 8ms ? 1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 if n < 2 { 4 return 0 5 } 6 7 var res = Array(repeating: 1,count: n+1) 8 9 res[1] = 0 10 11 for i in 2...n { 12 var maxRes = 1 13 for j in 1..<i { 14 maxRes = max(maxRes,max(res[j],j) * max(i-j,res[i-j])) 15 } 16 res[i] = maxRes 17 } 18 return res[n] 19 } 20 } 8ms 1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 4 guard n > 3 else { 5 return [1,1,2][n] 6 } 7 8 var times3 = n / 3 9 10 if n % 3 == 1 { 11 times3 -= 1 12 } 13 14 let times2 = (n - times3 * 3) / 2 15 16 return Int(pow(3.0,Double(times3))) * Int(pow(2.0,Double(times2))) 17 } 18 } 16ms 1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 if n == 2 { 4 return 1 5 } else if n == 3 { 6 return 2 7 } else if n % 3 == 0 { 8 return Int(pow(3,Double(n / 3))) 9 } else if n % 3 == 1 { 10 return Int(2 * 2 * pow(3,Double((n - 4) / 3))) 11 } else { // 2 12 return Int(2 * pow(3,Double((n - 2) / 3))) 13 } 14 } 15 } 24ms 1 class Solution { 2 func integerBreak(_ n: Int) -> Int { 3 var dps = Array(repeating: 0,count: n + 1) 4 dps[1] = 1 5 for num in 2...n { 6 for j in 1..<num { 7 dps[num] = max(dps[num],j * max(num - j,dps[num - j])) 8 } 9 } 10 11 return dps[n] 12 } 13 } (编辑:李大同) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |